金科力® JINKELI

Research & Development of Paste Additives for High-rate Discharge Batteries

www.jinkeli.com jkl@jinkeli.com

Outline

- **Part 1 Introduction**
- Part 2 Project Background
- Part 3 Optimization of the Negative Expanders
- **Part 4 Battery Tests**
- **Part 5 Conclusion**

Part 1: Introduction

Company History

- 1982 Founded in Zibo / China;
- 2001 Humic acid was specially recommended by Battery Institute of Shenyang;
- 2005 ISO 9001 :2008 Certified;
- 2007 R&D center built;
- 2009 Drafter of additives standard for lead acid battery industry;
- 2012 Strategic partnership with Borregaard;
- 2013 R&D center acknowledged as Provincial R&D center;
- 2014 Strategic partnership with Cabot Corporation & Member of ALABC;
- 2015 Technology exchanges with Bulgarian Academy of Sciences & built joint laboratory with Cabot Corporation;
- 2016 ISO14000 ISO 18000&TS16949 & joint laboratory with Borregaard in August

Today

- * Advanced battery R&D Center, continuous technical support and product development
- * The largest battery additives supplier in China and over 70% domestic market share
- Global sales and service networks
- Drafter of additives standard for lead acid battery industry in China
- ISO 9001:2008 ,ISO14000, ISO18000 & TS16949
- More than 180 employees
- ★ 53,334m² production and storage area
- W USD 9.2 million register capitals

R&D Center

Jinkeli R&D Center was founded in 2007, and consists of process lab, cell testing lab and battery testing lab.

Committed to continual development and improvement of additives for lead acid battery and provide battery technical support and service. Collaboration with Bulgarian Academy of Sciences, Borregaard, Cabot, ALABC and universities & colleges.

Technical & Engineering Team

Cao Guifa
Director of R&D center
Senior engineer

Ban TaoweiProduct manager
Assist Senior Engineer

Hua Shounan
Professor
Senior consultant

Liu Wenlin Product manager Engineer

Mike McDonagh Consultant

Zhou Yu Project manager Engineer

Lab Equipments

Atomic absorption spectrometer

Content of the Fe, Mn, Cu and other metal impurities of pre-blended expander, humic acid, graphite, etc.

Laser particle size analyzer

Particle size distribution of barium sulfate, graphite, carbon black, etc.

Simultaneous thermal analyzer

Analysis of the ingredients content in the Preblended expanders, and the decalescence, heat release, melting point of the ingredients

Electrochemical workstation

Measurement for different electrochemical constant

Labs & Equipments

^{金科力} JINKELI

Labs & Equipments

Battery Testing Lab

XRD SEM

Battery Test Equipments

Accuracy up to 0.02%

Cycle life test, Capacity test, Internal resistance test, Charge retention test, **Battery performance under** different temperature, Over-charge and overdischarge rate test, Etc.

Temperature range: -60°C~150°C

Collaborative Lab with Cabot & Borregaard

Part 2: Project Background

Background

High-power batteries

Number of batteries reduced

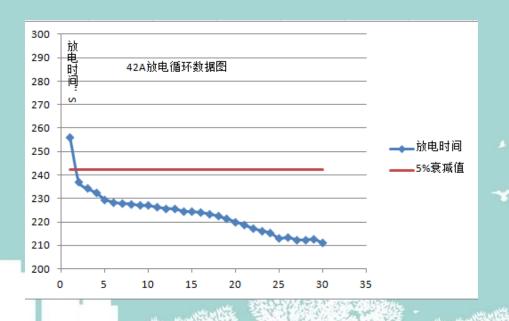
Space and cost save

1KVA PC 12V7Ah Batteries

Customers' Requirement

- 1. Battery capacity discharge for 10min improve 20% (battery weight remain the same)
- 2. The discharge time declines after 30 cycles less than 5%

Current average situation in China:


Batteries(6-FM-7 Ah) discharge time @21A is 10-11min.

Current Situation of Leading Battery Producer A

1. Average discharge time @21A is 10'50"

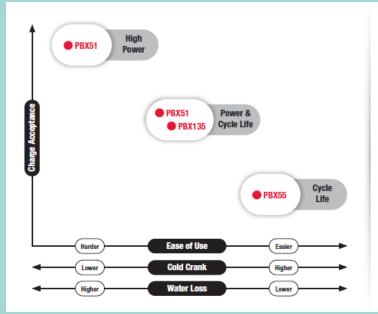
- (request ≥13min)
- 2. Discharge @42A- time decline after 30cycles is about 17%(request less than 5%)

Part 3: Optimization of the Negative Expanders

Effects of Battery Additives to High Power Discharge

Carbon

Improve conductivity of lead sulfate


Barium sulfate

Recrystallization nuclear

Lignin

Limits the growth of spongy lead and lead sulfate crystallization

Additives for Lead Acid Batteries

The primary function of Cabot additives for batteries is to improve the morphology of negative plates and enable better charge acceptance and cycle life for partial state of charge cycling applications.

- For applications that require superior dynamic charge acceptance, Cabot recommends high surface area grades such as PBX51. This grade is most suitable for valve regulated lead acid (VRLA) batteries or in applications where water loss and cold crank performance are less important or can be mitigated by battery design or system fixes.
- For applications that primarily require excellent cycle life, with minimal requirements on charge acceptance Cabot recommends low surface area grades such as PBX55.
- For applications where both high charge acceptance and cycle life are important, Cabot's multi-purpose grades PBX09 and PBX135 are recommended and can meet the requirements for a variety of applications.

Balancing Other Requirements

- High surface area grades may impact water loss, cold crank and deep discharge in some applications.
- Cabot can provide recommendations on how to select and optimize additives to achieve appropriate balance between various requirements.
- Cabot can also provide recommendations how to disperse and incorporate Cabot's additives into the negative plate.

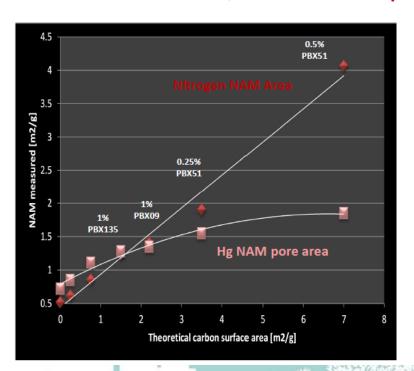
	PBX™	⁴ Spec			
	PBX09	PBX51	PBX135	PBX55	
BET (m²/g)	210~260	1300~1550	120~180	45~60	
OAN (cc/100g)	100~130	140~200	150~180	120~150	
Fe (ppm)	<20	<40	<20	<20	
Application	Telecom,	Start-stop, E-bike	EFB	EFB	
	Energy-		312 c		
	storage, UPS			3	
Dosage	0.5%~1%	0.25%~0.5%	0.5%~1%	0.5%~1%	

Cabot PBX[™] high performance carbon features:

- •Improve dynamic charge acceptance
- Excellent dispersion and easy operation
- •Improve cycle life at PSoC
- •Improve battery production and consistency

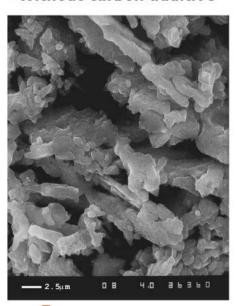
PBX[™] products have been widely used in lead acid industry worldwide. PBX7 is the best substitute of acetylene carbon.

Carbons Could Act as Seed for PbSO₄/Pb Crystallites Growth and Change Pb Size and Surface Area



^{金科力} JINKELI

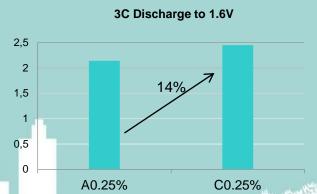
NAM Surface area – micro, meso vs. macro porosity



^{金科力} JINKELI

SEM Images of Negative Active Mass (NAM): Different Size Pb Crystallites

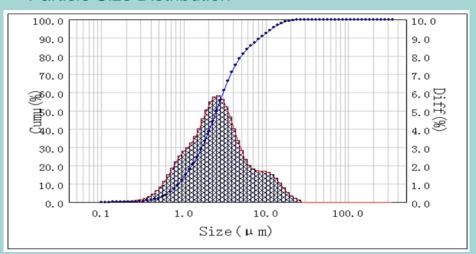
Without carbon additive



Effects of Different Carbons on Battery Performance

	0.3A放电至1.75V	-18℃,40A放电至1.0V	2.4V充电10min时	-15℃ 1.5A放电至1.75V	3C 放电至1.6V
序号	放电容量Ah	时间s	电流₄	放电容量Ah	放电容量Ah
A (0.25%)	4.059	181.000	0.626	2. 535	2.142
A (0.5%)	4.266	195.200	0.993	2.708	2. 282
A (1%)	4.189	198.800	1.214	2.350	2.182
B(0.25%)	4.113	204.000	0.704	2.512	2.430
B(0.5%)	4.230	193.500	0.882	2. 598	2. 261
C (0.25%)	4.028	193.000	0.898	2.508	2.449
D(1.0%)	4.143	175.400	1.059	2.495	2. 224

We study the different carbon materials and confirmed the mixing ratio by repeated tastings.



The function of barium sulfate is to work as the crystallization of lead sulfate, preventing the plates shrink during the charging cycles and improving battery discharge performance and charge acceptance.

Due to different process technologies, the particle size and distribution as well as structure of barium sulfate vary a lot, which will have different effects on battery performance.

^{金科力} JINKELI

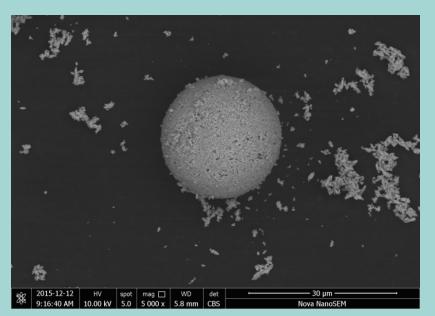
Particle Size Distribution

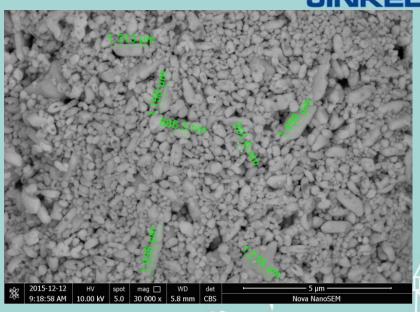
		体积平均径:3.68um		面积平均径:1.81	um.	遮光率:17.43	
比表面积:1226.68m^2/k;	g	物质折射率:1.649+0	0.100i	介质折射率:1.33	13	跨度:3.	07
D3:0.55um	D6:	0.70um	D10:0.8	бит	D16:1.09um		D25:1.46um
D75:4.23um	D84	:5.99um	D90:8.5	3um	D97:13.85um		D98:15.34um

A contract c	
	4

中位径:1.03шm	体积平均径:1.13um	体积平均径:1.13um		面积平均径:0.93шm		14.75
比表面积:2374.27m^2/kg	物质折射率:1.649+	0.100i	介质折射率:1.33	13	跨度:1.	15
D3:0.44um	D6:0.52wm	D10:0.5	9um	D16:0.67um		D25:0.77um
D75:1.38um	D84:1.58um	D90:1.7	9um	D97:2.35um		D98:2.54um

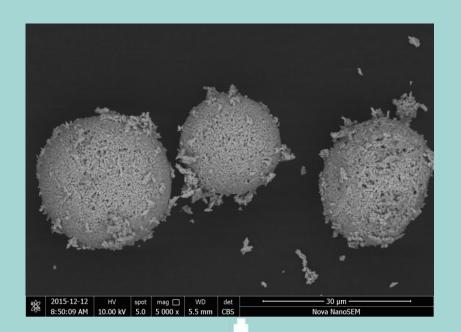
Sample N

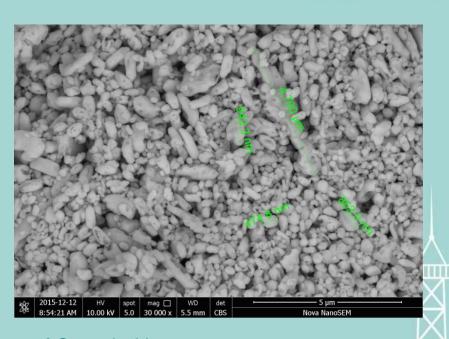

Sample Y/



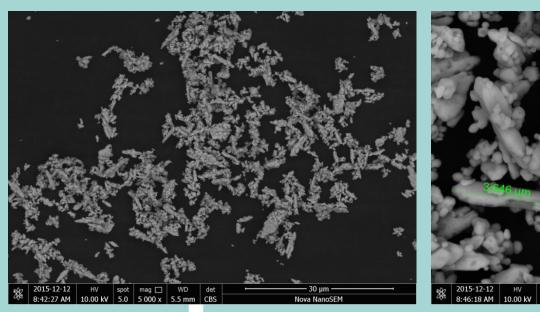
Particle size:

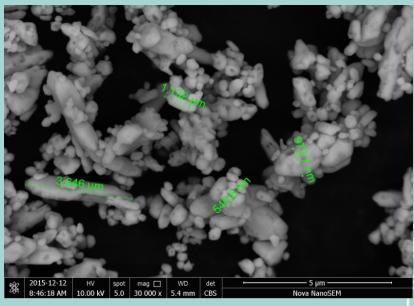
We made a comparison test between ultrafine barium sulfate and ultrafine precipitated barium sulfate with laser particle size analyzer.


改性超细硫酸钡(单位 um)										
	D90	D50	D25		D90	D50	D25			
	22.31	4.12	1.97		5.15	1.81	1.04			
未开超声	20.91	6.66	3.29	开超声	4.77	1.74	1.01			
	16.63	4.08	1.97		3.69	1.66	0.98			
	14.38	3.95	2.00		4.72	1.69	0.98			
		超	细沉淀硫酸	钡(单位 um	1)					
	D90	D50	D25		D90	D50	D25			
未开超声	2.65	1.25	0.84	开超声	2.45	1.19	0.81			
木开起产	2.56	1.23	0.83	开鸠严	2.40	1.16	0.80			
	2.53	1.22	0.82		2.42	1.17	0.80			

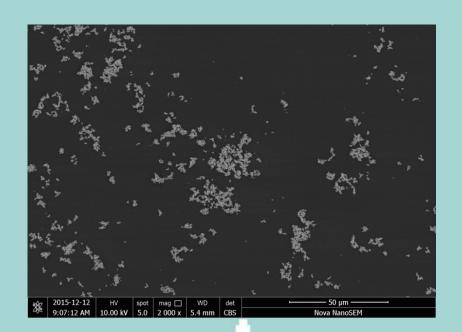


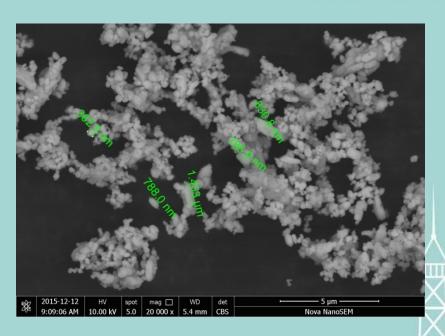
Part of ball structures of Sample X





All ball structures of Sample N





Structures of Sample Y

Structures of Sample A

From the SEM images, we can find some samples of BaSO4 are part or all ball structures. Average particle size is around 20µm. While Sample A is 1-3µm, and uniformly dispersed without agglomeration.

We use ultrasonic in the particle size analysis and we found Sample A is no big difference of reaction to the ultrasonic, which means it has good dispersion and no agglomeration, good for battery performance.

1

Effects of Different BaSO4 on Battery Performance

	1.5A放电至1.75V	-18℃,40A放电至1.0V	2.4V充电10min时	-15℃ 1.5A放电至1.75V	3C 放电至1.6V
序号	放电容量Ah	时间s	电流₄	放电容量Ah	放电容量Ah
硫酸钡A 0.7%	4.809	153	1.243	2.004	2.976
硫酸钡A 1%	4.784	166	1.270	2.287	3.305
硫酸钡B1%	4.693	159	1.270	2.440	3.237
硫酸钡C 0.7%	4.610	101	1.416	2.418	-
硫酸钡C1%	4.746	105	1.400	2.509	-
硫酸钡D1%	4.603	119	1.405	2.633	-
硫酸钡DO.7%	4.556	130	1.570	2.801	-

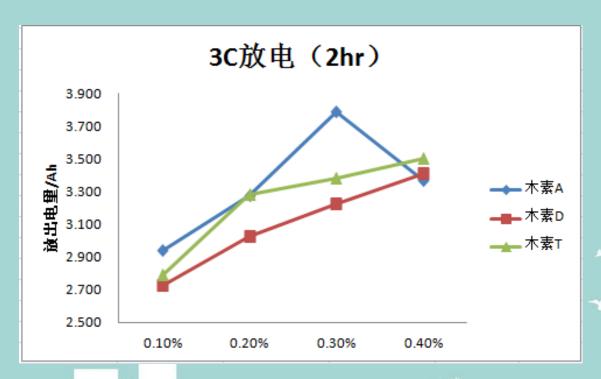
We study the different Barium sulfate and confirmed the mixing ratio by repeated tastings.

Selection of Lignin and Mixing Ratio

The dissolution degree of organic expander(lignin) has obvious correlation with high-rate discharge performance.

The below is the test of dissolution degree.

Test procedure: 1. Sulfuric acid 100ml 1.32g/cm³(25°C)

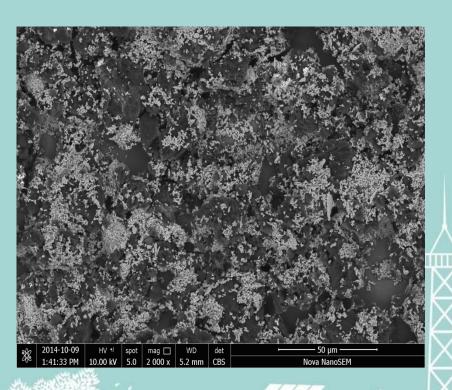

2. Put 0.5g different kinds of organic expander into the acid and stand for 7days, and then filter & weigh.

	Bulk	Residue on	%	%	РН	Alkali	Water soluble		d solubility at ro temperature%		High te	emperature acid	solubility%
No.	density (g/ml)	sieve(0.125m m)	Moisture	Ash	РН	insoluble %	at room temperature%	1.05 g/ml	1.28 g/m1	1.35 g/m1	1.05 g/ml	1.28 g/m1	1.35 g/ml
1	0. 341	18	3.7	2	6. 34	0. 1	17	6	3	5. 5	9	8	9
2	0.509	16	6.5	12.5	7. 54	0. 1	99. 5	23	13	20	22	22	23
3	0. 596	32	12. 8	22.6	9. 05	0.1	99. 6	96	48	46	38	39	40
4	0. 515	1	4	22	7.94	0. 1	99. 7	93	86	49	42.5	43	44
5	0. 584	4	13.5	20	8. 55	0. 1	99. 6	96	95. 5	15	38	38	39

Chart 1: Comparison of the acid insolubles of different organic expanders

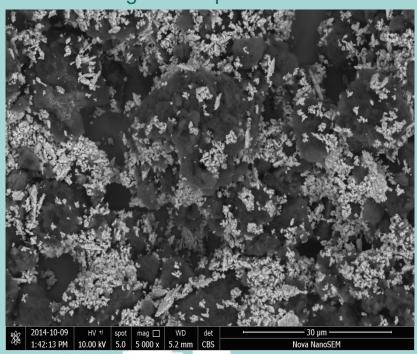
Effects of Different Lignin on Battery Performance

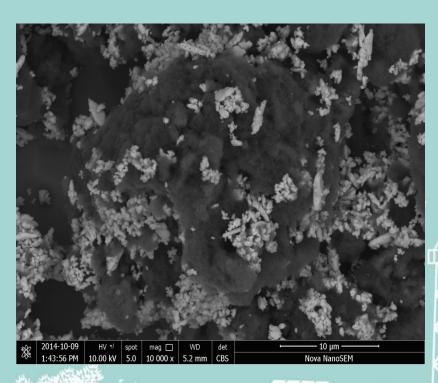



Different types of lignin and different mixing ratio will have different effects on battery performance.

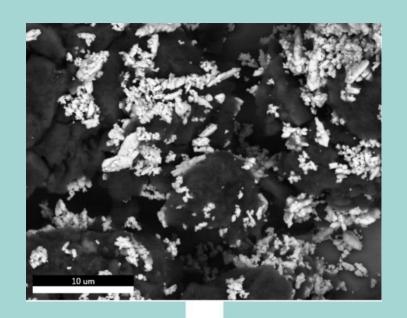
Negative Expanders Mixing Effects on Battery Performance

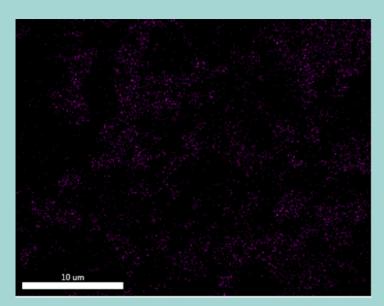
SEM Images of Expanders Mix



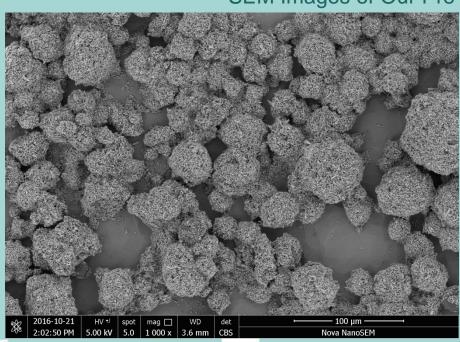


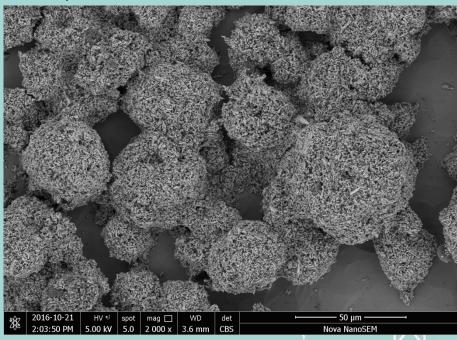
Negative Expanders Mixing Effects on Battery Performance


SEM Images of Expanders Mix



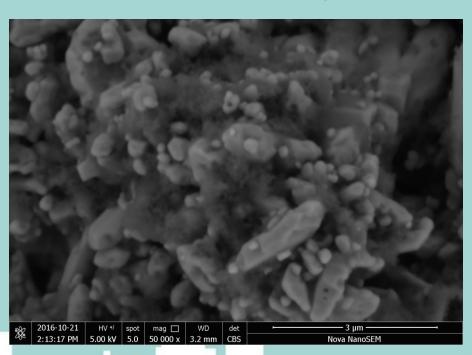
SEM Images of Expanders Mix

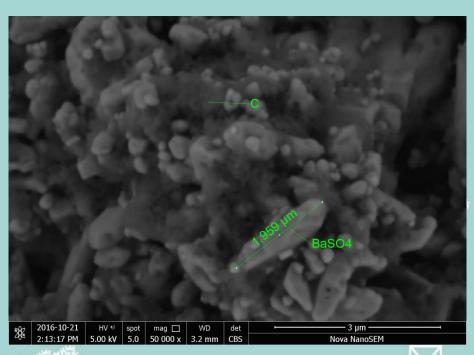



Ba distribution

Manually Mixing

SEM Images of Our Pre-mixed Expanders



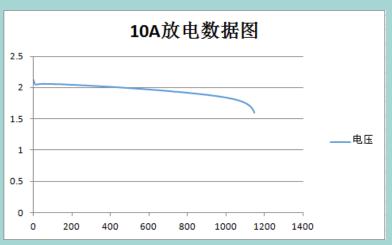


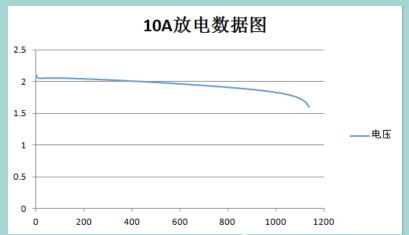
SEM Images of Our Pre-mixed Expanders

- 1. There are agglomeration of expanders in the manual mixing, which is bad to chemicals functioning.
- 2. With our pre-mixed expanders, all the chemicals will disperse uniformly around lignin without agglomeration. All chemicals will fully function and battery performance will improve accordingly.

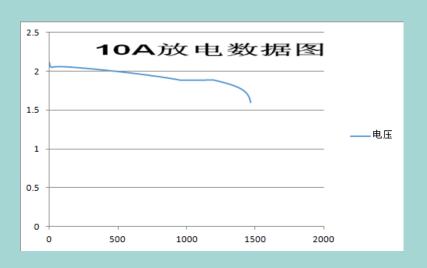
Part 4: Battery Tests

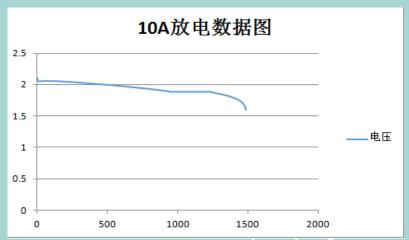
Test Design




- 1. Orthogonal test of additives mixing ratio or dosage
- 2. Laboratory cells:
 Assemble cells(3positive&2negative) to compare the electrical performance of the negative plates
- 3. Test procedure
 - 1). Discharge @10A to 9.6V
 - 2). Constant voltage of 2.47V charge for 10h with current limit of 0.6A

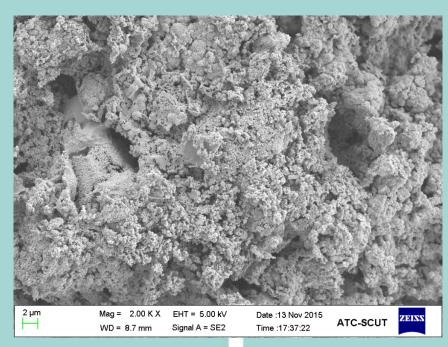
Discharge Curve(with existing expanders)





Lab cells test data: discharge @10A time is around 1200s.

Discharge Curve(with our optimized expanders)



Lab cells test data: discharge @10A time improves to 1500s.

SEM Images of Negative Plates

Date :13 Nov 2015 ATC-SCUT

Plates using existing expanders

Plates using optimized expanders

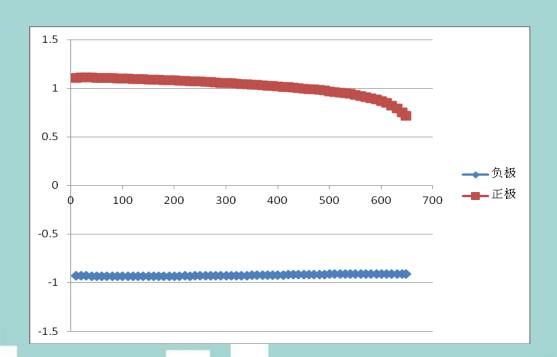
From the SEM images, we can find that plates using optimized expanders is much better in both surface area and porosity.

Porosity

			Negativ	e Optimized			
No.	1 st weigh	After punching	2 nd weigh	3 rd weigh	Soak for 3h	Weight after soaking	Porosity
1st plate	70.185	70.103	70.113	70.114	72.860	56.178	71.10%
2nd plate	70.247	70.174	70.185	70.185	72.361	57.703	66.45%
3rd plate	70.881	70.801	70.815	70.815	73.392	57.992	67.88%
						Average value	68.60%
			Existir	ng negative			
No.	1 st weigh	After punching	2 nd weigh	3 rd weigh	Soak for 3h	Weight after soaking	Porosity
1st plate	74.327	74.261	74.286	74.287	76.032	61.145	64.24%
2nd plate	71.918	71.845	71.873	71.873	73.571	59.670	63.08%
3rd plate	72.761	72.695	72.720	72.720	74.550	59.990	64.41%
						Average value	64.70%

From the data, we can see that the plates porosity has been improved from 64.7% to 68.6%.

Battery Performance


^{金科力} JINKELI

	Discharge time @21A (s)			
No.	Existing expanders	Optimized expanders		
1	679	725		
2	682	710		
3	674	728		
4	686	714		
5	680	717		

Assemble batteries and discharge @ 21A, we found that the discharge time improve from around 680s to 720s, but still fail to reach the expectation of 780s.(13min)

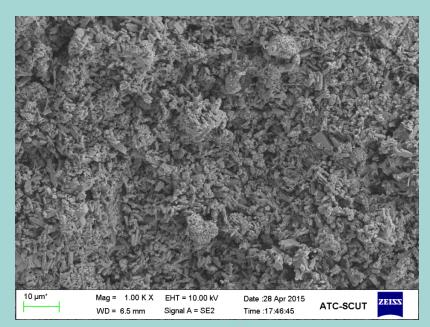
Electrode Potential Test

Use Ag/AgSO4 as reference to find out the limiting electrode affecting the capacity when discharge @21A.

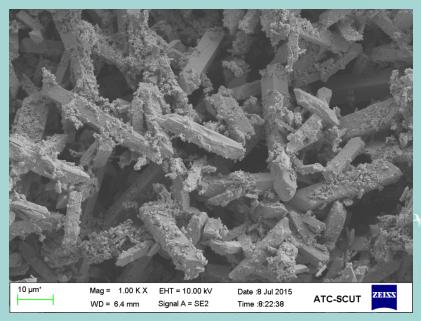
From the picture we can see the problem lies in the **positive**. Then the next step is trying to improve the positive additives.

Optimization of Positive Additives

Aim:

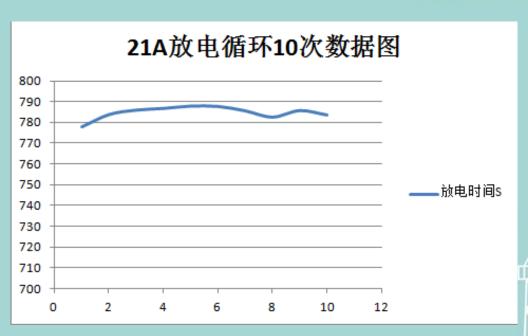

- 1. Improve plates high-rate discharge capacity
- 2. Improve plates pore radius
- 3. Improve the conductivity

Solution:


- 1. Add new additive to improve the utilization of active material
- 2. Add new carbon to improve the conductivity
- 3. Add new additive to improve the high-rate discharge performance

SEM Images of Positive Plates

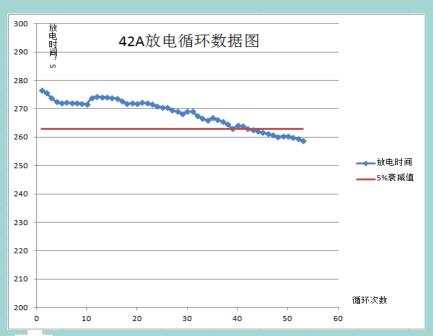
Plates using existing additives


Plates using optimized additives

We can see from the SEM images that the pore radius of plates using optimized additives have been significantly improved and have stronger structure.

Electrical Performance Comparison Test

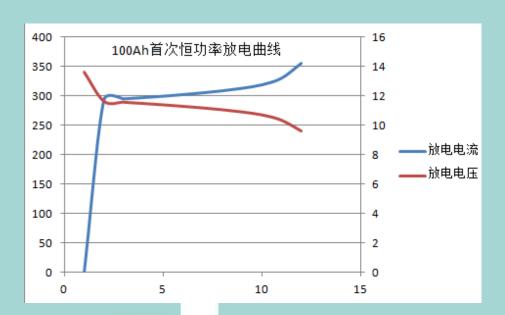
Cycle	Discharge time (s)	Discharge time (min)
1	777.8723	12.96454
2	783.8846	13.06474
3	786.0373	13.10062
4	786.8637	13.11440
5	787.9873	13.13312
6	787.7844	13.12974
7	785.6783	13.09464
8	782.6209	13.04368
9	785.8010	13.09668
10	783.6817	13.06136



Discharge @21A 10 cycles

Discharge @21A time(s) ≥13min 10cycles≥9min

Electrical Performance Comparison Test



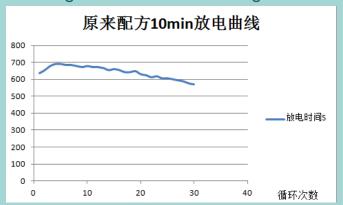
Discharge @ 42A- 40cycles, time decline 5% meet the requirement of discharge time decline less than 5% after 30cycles

Test Results of 100Ah Batteries

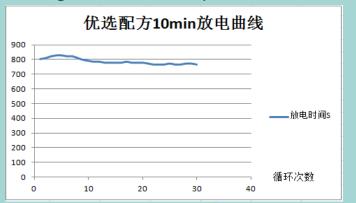
Battery Performance

No.	Test Items	Results	
1	Weight (kg)	31. 5	
2	C10 (Ah)	105. 6	
3	Discharge for 10min (1.6V/cell) (568W)	10min36s	
4	Discharge for 15min (1.6V/cell) (418W)	16min21s	
5	10min rate after 30cycles discharge time(min)	9min35s	

Electrical Performance Comparison Test


1. Test procedure:

Discharging: discharge @ 568W to 1.6V/cell


Charging: Constant voltage of 13.8V charge for 8h

2. Results: with current limit of 15A

Discharge Curve of the Existing Additives

Discharge Curve of the Optimized Additives

Item	Existing additives	Optimized additives	Improvement
10min Discharge capac (average level)	ity 642S	788S	22.7%
30cycles decline	10.38%	4.48%	

Part 5: Conclusion

Conclusion:

With the application of our optimized positive and negative additives for high-power applications, the battery performance especially the high-rate discharge performance have been significantly improved and the customer's requirements have also been satisfied.

Different Types of Pre-blended Additives for Different Applications

Product series	Applications	Features		
JSS	Start-stop batteries	Better starting ability, charge acceptance and deep cycle life, meet the requirements of both AGM and EFB batteries		
JS	Starter batteries Meet high and low temperature applications, and extend battery life			
JEV	Motive batteries	Better charge acceptance and low –temperature performance, low water loss and longer cycle life		
JV	Traditional back up power	Low rate discharge, discharge current lower than 0.5 CA, time 60min-6h		
	High-rate discharge back up power	High-rate discharge, current more than 0.5CA, time 3min-1h		
JSP	Energy-storage batteries	Meet high or low temperature applications, high endurance to sulfation and low self-discharge		

